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Abstract 

In this note, we consider the distribution of the random variable H
ss

T
dSSα∫0

 and 

obtain the expression of its characteristic function, where αS  and HS  are two 
independent sub-fractional Brownian motions with indices ( )1,0∈α  and 

( ) ,1,
2
1∈H  respectively. 

1. Introduction 

Recently, as a generalization of Brownian motion, Bojdecki et al. [5] 
introduced and studied a rather special class of self-similar Gaussian 
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processes, which preserve many properties of the fractional Brownian 
motion (fBm in short). This process arises from occupation time 
fluctuations of branching particle systems with Poisson initial condition, 
which is called the sub-fractional Brownian motion. The so-called sub-
fractional Brownian motion (sub-fBm in short) with index ( )1,0∈H  is a 

mean zero Gaussian process { }0, ≥= tSS H
t

H  with ,00 =HS  and the 
covariance  

( ) [ ] ( )[ ],2
1, 2222 HHHHH

s
H
tH sttstsSSEstR −++−+=≡  (1.1) 

for all .0, ≥ts  For HSH ,21=  coincides with the standard Brownian 

motion B. HS  is neither a semimartingale nor a Markov process unless 
,21=H  so many of the powerful techniques from stochastic analysis 

are not available, when dealing with .HS  The sub-fBm has properties 
analogous to those of fBm (self-similarity, long-range dependence, Hölder 
paths), and satisfies the following estimates: 

[( ) ] ( ) ( )[ ] [( ) ] ( ) .122122 2122212 HHH
s

H
t

HH stSSEst −−≤−≤−− −−   

(1.2) 

But, its increments are not stationary, more works for sub-fBm can be 
found in Bojdecki et al. [6], Tudor [15, 16, 17, 18, 19], and Yan-Shen [21]. 
In this note, we consider the law of stochastic integral 

,
0

H
tt

T
dSSα∫  (1.3) 

where α
tS  and H

tS  are two independent sub-fBms. Our aim is to obtain 
the expression of its characteristic function. 

We have known that it is difficult to compute the law of a stochastic 
integral with respect to the Wiener process, when the integrand is not 
deterministic. The systematic study for this problem was initiated in Lévy 

[10]. He showed that the characteristic function of s
t

ss
t

t YdYXA ∫∫ −=
00

 

sdX  is 
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( ) ( ) ,,0,cosh
1 R∈≥= ututeE tiuA  

where ( )tt YX ,  is an 2R -valued Brownian motion with ( ) ( ).0,0, 00 =YX  

This is called Lévy’s stochastic area formula. Berthuet [3] and Yor [22] 
(see also Protter [14]) gave other proof, and considered the law of the 
random variables 

.0,
00

≥ρ+λ ∫∫ tdXYdYX ss
t

ss
t

 

The two-parameter case was considered in Julià-Nualart [9] and Nualart 
[12]. Yan-Chen [20] considered the intersection local time and calculus 
for the stochastic area process .tA  The stochastic area process tA  shares 

some properties of Brownian motion. For example, tA  satisfies a 

reflection principle. If one changes the sign of the increments of tA  after 
a stopping time, the process obtained thereby has the same distribution 
as that of .tA  One can use this fact to show, for example, that if =tS  

,sup0 sts A≤≤  then tS  has the same distribution as ,tA  for .0>t  

As an extension, recently, Bardina-Tudor [2] considered a similar 
integral driven by fractional Brownian motions, and they obtained the 

characteristic function of the random variable ,1
0

H
ss dBBS α∫=  where αB  

and HB  are two independent fractional Brownian motions with Hurst 

indexes ( )1,0∈α  and ( ),1,2
1∈H  respectively. As is well-known, in 

recent years, the long-range dependence property has become an 
important aspect of stochastic models in various scientific areas including 
hydrology, telecommunication, turbulence, image processing, and finance. 
The best known and most widely used process that exhibits the long-
range dependence property is fractional Brownian motion. The fBm is a 
suitable generalization of the standard Brownian motion, but exhibits 
long-range dependence, self-similarity, and stationary increments. It is 
impossible to list here all the contributors in previous topics. Some 
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surveys and complete literatures could be found in Biagini et al. [4], Hu 
[8], Mishura [11], Nualart [13]. However, contrast to the extensive 
studies on fBm, there has been little systematic investigation on other 
self-similar Gaussian processes. The main reasons are the complexity of 
dependence structures and the non-availability of convenient stochastic 
integral representations for self-similar Gaussian processes, which do not 
have stationary increments. On the other hand, many authors have 
proposed to use more general self-similar Gaussian processes and random 
fields as stochastic models, and such applications have raised many 
interesting theoretical questions about self-similar Gaussian processes 
and fields in general. Thus, it seems interesting to study the law of 
stochastic integrals driven by more general self-similar Gaussian 
processes. 

This note is organized as follows. In Section 2, we present some 
preliminaries for sub-fBm and the Wiener integral with respect to sub-
fBm. In Section 3, we obtained the characteristic function of stochastic 

integral .
0

H
tt

T
dSSα∫  The case of two-parameter is considered in Section 4. 

2. Preliminaries on Sub-FBM 

Let { [ ]}TtSH
t ,0, ∈  be a sub-fBm with ,12

1 << H  defined on the 

complete probability space ( ).,, PFΩ  It is possible to construct a 

stochastic calculus of variations with respect to the Gaussian process 

,HS  which will be related to the Malliavin calculus. Some surveys and 

complete literatures could be found in Alòs et al. [1], Nualart [13], and 
Tudor [18]. We recall here the basic definitions and results of this 
calculus. The crucial ingredient is the canonical Hilbert space HH  (is 

also said to be reproducing kernel Hilbert space) associated to the sub-

fBm ,HS  which is defined as the closure of the linear space E generated 

by the indicator functions { [ ] [ ]}Ttt ,0,1 ,0 ∈  with respect to the scalar 

product 
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[ ] [ ] ( ) ( ),,,1,1
00

,0,0 stRdudvvu HH
st

st H
=φ= ∫∫H  

where ( ) ( ) [ ( ) ].12, 2222 −− +−−−=φ HH
H tstsHHts  As usual, we can 

define the linear application 

( ),,,: 2 PL FΩ→Φ E  

by 

[ ] ( [ ] ) [ ]( ) .111 ,0
0

,0,0
H
t

H
st

T
tt SdSs ≡=Φ ∫a  (2.1) 

The application can be extended to a linear isometry between HH  and 

the Gaussian space associated with .HS  We will denote the isometry by 

( ),ϕ→ϕ HS  and 

[ ( ) ( )] ( ) ( ) ( ) ,,,
00

dsdttstvsvSSEv H
TTHH

H
φ/ϕ=/ϕ=/ϕ ∫∫H  

for any ., Hv H∈/ϕ  We call ( ) ( ) ,:
0

H
s

TH dSsS ϕ=ϕ ∫  the Wiener integral of 

ϕ  with respect to .HS  Sometimes working with the space HH  is not 

convenient; once, because this space may contain also distributions (see, 
for example, Tudor [16, 19] for more details) and twice, because the norm 
in this space is not always tractable. We will use the subspace HH  of 

,HH  which is defined as the set of measurable functions [ ] RaT,0:ϕ  

on [ ]T,0  such that 

( ) ( ) ( ) .,
00

∞<φϕϕ∫∫ dudvtsts H
TT

 

It has been proved in Tudor [19] that HH  is a strict subspace of .HH  

For ,12
1 << H  we denote by S  the set of smooth functionals of the 

form 
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( ( ) ( )),,,1 n
HH SSfF ϕϕ= K  

where ( )n
bCf R∞∈  and .Hi H∈ϕ  The Malliavin derivative of a 

functional F defined as above is given by 

( ( ) ( )) .,,1
1

in
HH

i

n

i

H SSx
fFD ϕϕϕ

∂
∂= ∑

=

K  

The derivative operator HD  is then a closable operator from ( )Ω2L  into 

( ).,2
HL HΩ  We denote by 2,1D  the closure of S  with respect to the 

norm 

.: 22
2,1 HDFEFEF +=  

The divergence integral Hδ  is the adjoint operator of .HD  That is, we 

say that a random variable u in ( )HL H,2 Ω  belongs to the domain of the 

divergence operator ,Hδ  denoted by ( ),Dom Hδ  if 

( ),, 2 Ω≤ L
H FcuFDE

HH
 

for every .S∈F  In this case, ( )uHδ  is defined by the duality 

relationship 

 [ ( )] ,,
H

uFDEuFE HH
H=δ  (2.2) 

for any ,2,1D∈u  and we have the following integration by parts formula: 

 ( ) ( ) ,,
H

uFDFuuF HHH
H+δ=δ  (2.3) 

for any ( ) 2,1,Dom D∈δ∈ Fu H  such that ( ).,2
HLFu HΩ∈  It follows 

that 

( )[ ] ( ) ,,22
HHH

uDuDEuEuE HHH
HHH ⊗

∗+=δ  
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where ( )∗uDH  is the adjoint of uDH  in the Hilbert space ,HH HH ⊗  

and 

( ) ,,
00

2 dsdrrsuuu Hrs
TT

H
φ= ∫∫H  (2.4) 

and for [ ] ,,0: 2 R→ϕ T  we have 

[ ]
( ) ( ) ( ) ( ) .,,,,4,0

2 sdtdtdsdssttstst HH
THH

′′′φ′φ′′ϕϕ=ϕ ∫⊗HH  

We also will use the notation 

( ) ,
0

H
ss

TH dSuu ∫=δ  

to express the Skorohod integral of a process u. It is also possible to 

introduce multiple integrals ( ) n
Hnnn ffI ⊗∈ H,  with respect to .HS  For 

the divergence integral, we have the following convergence: if { }nu  is a 

sequence of elements in ( )HδDom  such that uun →  in ( ),,2
HL HΩ  

and ( ) Gun
H →δ  in ( ),2 ΩL  then we have ( )Hu δ∈ Dom  and 

( ) .GuH =δ   

Clearly, for any ,Hf H∈  the Wiener integral with respect to HS  can 

be defined as (see Tudor [19]) 

( ) ( ) ,lim
1

10





 −=

−∑∫
=

∞→
H
s

H
sj

n

j
n

H
s

T

jj
SSsfdSsf  (2.5) 

where { }Tsss n == ,,,0 10 L  is a partition of [ ]T,0  such that 

{ } ,0max 1 →−+ iii ss  as n tends to infinity. Moreover, if stochastic 

process u is independent of ,HS  then the Skorohod integral ( )suT
∫ 0

H
sdS  

can be defined as (2.5), since the Malliavin derivative of u is zero. 
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Finally, we will denote by n
SH ,H  the set of symmetric functions in 

.n
HH  For ,2

, SHf H∈  we recall the Hilbert-Schmidt operator (see 

Caithamer [7]) 22: HH
H
fK HH →  given by 

( ) ( ) ( ) ( ) ( ) .,,
00

xdxdxxxvyxfyvK H
TTH

f ′′φ′/=/ ∫∫  (2.6) 

One can easily check that, if f is positive and ( ),1,2
1∈H  then the 

eigenvalues of operator H
fK  are positive. In fact, we can write 

( ) ( ) ( ) ( ) ,,
0

xdxvyxAyvK
TH

f ′′/′=/ ∫  

where ( ) ( ) ( )dxxxyxfyxA H
T

′φ=′ ∫ ,,,
0

 is positive, then the operator 

H
fK  is a positive operator. It is noteworthiness that the operator H

fK  

will be changed as 

( ) ( ) ( ) ,,
0

dxxyxfyK
TH

f ϕ=ϕ ∫  

provided .2
1=H  

3. The Characteristic Function of the Integral (1.3) 

Throughout this section, HS  and αS  will denote two independent 
sub-fractional Brownian motions with parameters H and ,α  respectively. 
We compute the characteristic function of the random variable 

.
0

H
tt

T
dSSα∫=l  (3.1) 

The method used here is essentially due to Bardina-Tudor [2]. Note that, 

when ( ),1,2
1∈H  the random variable l  defined in (3.1) is well-defined, 
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since obviously αS  belongs to ( ) HL H×Ω2  for any .α  The main object of 

this section is to explain and prove the following theorem. 

Theorem 3.1. Let ( ) ( ).1,2
1,1,2

1 ∈∈α H  If the random variable l  

is given by (3.1), then we have 

,11
2
1

2
1















µ
+= ∏

≥ jj

it

t
Ee l  (3.2) 

where 1, ≥µ jj  are the eigenvalues of the operator α
Hf

K  given by (2.6) 

and Hf  is defined by (3.4). 

In order to prove the theorem, we need some lemmas. 

Lemma 3.1. Assume ( )1,2
1∈H  and ( ).1,0∈α  Denote by 

( ),
1

1

0

H
t

H
tt

n

k
n kkk

SSS −=
+

α
−

=
∑l  (3.3) 

where { }Ttttt nn =<<<<==∆ L2100:  denotes a partition of 

[ ],,0 T  such that 11max −≥ −=∆ nnnn tt  tends to zero as n tends to 

infinity. We then have 

,ll →n  

in ( )Ω2L  as n tends to .∞  

Proof. By the independence of HS  and ,αS  we can write 

( ) .
1

1
H
rt

t

t
H
t

H
tt dSSSSS

k

k

kkkk
αα ∫

+

+
=−  

Now, it suffices to prove 

[ ]( ) ,1 1,

1

0

α
⋅

α
−

=

→⋅
+∑ SS kkk ttt

n

k
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in ( ) HL H×Ω2  as n tends to infinity. Actually, in general, to prove the 

convergence of a sequence of stochastic integrals of divergence type, one 
needs the convergence of the Malliavin derivatives, but in our case, it is 
unnecessary due to the independence of the two sub-fBms. Noting that 

[ ]( )⋅=
+

α
⋅

−
=

α
⋅ ∑ 1,

1
0 1 kk tt

n
k SS  for all ,1≥n  by (1.2), we have 

( ) [ ]

2

,

1

0
11

H

kkk ttt

n

k
SSE

H
+

α
⋅

α
−

=

−∑  

( ) ( )dudvvuSSSSE Hvtut
t

t

t

t

n

jk
jk

j

j

k

k
,

11
1

0,
φ




 −−= αααα

−

=
∫∫∑ ++

 

[( ) ] ( )dudvvuvtut Hjk
t

t

t

t

n

jk

j

j

k

k
,122

11
1

0,

12 φ−−−≤ αα
−

=

−α ∫∫∑ ++
  

[( ) ]( ) ,022122 221212 →∆−−= α−−α
n

HH T  

as n tends to infinity.   

Lemma 3.2. (1) Let ( ).1,2
1∈α  Consider the function 

( ) {( ) ( ) ( ) HHHHHH yTxTxTTyxf 222212
2
12, ++−+++−= −  

( ) ( ) } [ ],,0,,222 TyxyxyxyT HHH ∈−−+−−+  (3.4) 

with .12
1 << H  Then, we have .2

, S
Hf α∈ H  

(2) Let ( ).1,2
1∈H  Consider the function 
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( ) ( )[ ] [ ],,0,,2
1, 2222 Tyxyxyxyxyxf ∈−++−+= ααααα  (3.5) 

with .10 <α<  Then, we have .2
, SHf H∈α  

Proof. Let us prove the point (1) and the point (2) is similar. We have 
to show that 

[ ]
( ) ( ) ( ) ( ) .,,,,: 212121212211

,0 4 ∞<φφ= αα∫ dydydxdxyyxxyxfyxfI HH
T

 

Noting that 

( ) ( ) ( )H
y

H
T

H
x

H
Tii

H
ii

SSSSEyxf −−=,  

( )( ) ( )( )212
1

22 H
y

H
T

H
x

H
T ii

SSESSE −−≤  

( ) ( ) ,H
i

H
i yTxT −−≤  

by (1.2), we see that the integral I is bounded by 

[ ]
[( ) ( ) ] ( ) ( ) ,,, 21212121

2

1,0 4 dydydxdxyyxxyTxTI H
k

H
k

kT
αα

=

φφ−−≤ ∏∫  

where 

( ) ( ) ( )[ ]22
21

22
2121 12, −α−α

α +−−−αα=ϕ xxxxxx  

( ) ,12 22
21

−α−−αα≤ xx  

for all .0, 21 ≥xx  It follows that 

( )( )
[ ]

( ) ( ) ( ) ( )HHHH
T

yTxTyTxTI 2211
,0

2
412 −−−−−αα≤ ∫  

2121
22

21
22

21 dydydxdxyyxx −α−α −−⋅  

( )
[ ]

( ) ( ) .12
2

21
22

2121
,0 2 







 −−−−αα= −α∫ dxdxxxxTxT HH
T
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Make substitution .yT
yxz

−
−=  Then, we have 

[ ]
( ) ( ) dxdyyxyTxT HH

T
22

,0 2
−α−−−∫  

( ) ( ) dxdyyxyTxT HHxT 22
00

2 −α−−−= ∫∫  

( ) ( ) dzdxzzxT HHT T
x

222122
00

12 −αα−−−α+ −−= ∫∫  

( ) ( ) dzdxxTzz HT

Tz
H









−−= −α+−αα−− ∫∫ 1222221

0
12  

( ) dzzzH
T HH

221

0

22
1 −α

α+
−

α+
= ∫  

( ) ,1,12
22

∞<+−α
α+

=
α+

HH
T H

B  

because of ( ),1,2
1∈α  where B is the Beta function. This completes the 

proof.   

Finally, we recall the following fact. 

Lemma 3.3. If X, Y are two independent random vectors, then 

( )[ ] ( ),, XXYXE ρ=Ψ  

where ( ) ( )[ ]YxEx ,Ψ=ρ  and Ψ  is a measurable function. 

Now, we can prove our main result. 

Proof of Theorem 3.1. By Lemma 3.1, we have 

,lim nit
n

it EeEe ll

∞→
=  

where nl  is given by (3.3) with ,Tn
ktk =  for every .1,,1,0 −= nk L  

Let us compute the characteristic function of the random variable .nl  

Define ( )110 ,,, −= nXXXX K  and ( )110 ,,, −= nYYYY K  by 
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.1,,2,1,0,and 1 −=−== +
α nkSSYSX H

T
H

TkTk
n
k

n
k

n
k K  (3.6) 

Thanks to Lemma 3.3 with ( ) { },exp, 1 jj
n
j yxityxv ∑ ==/  we obtain 

( ) ,
2

2
11

0 xAxtYxit HT
kk

n
k eeEx

−
=








=ρ ∑ −

=  

and 

( ) ( ) ,
2

2
12

2
1









≡








=ρ=

−− n
HT

n RtXAXtit eEeEXEeE l  

where ,XAXR HT
n =  and the matrix ( ) 1,,1,0,, −== nlk

H
lk

H AA L  is given 

by 









−








−= ++

H
T

H
T

H
T

H
T

H
lk

n
l

n
l

n
k

n
k SSSSEA 11,  

[ ( ) ( ) HHH
H

H
lklklk

n
T 222

2

2
1222

2
+++−−++−=  

( ) ].11 222 HHH lklklk −−+−+++−  

A straightforward calculation shows that 

αα
−

=
∑=

TT
H

lk

n

lk
n

n
l

n
k SSAR ,

1

0,
 






















−





















−= αα

−

=′

αα
−

=′

−

=
′+′′+′ ∑∑∑ TT

l

l
TT

k

k

H
lk

n

lk n
l

n
l

n
k

n
k SSSSA 11

1

0

1

0
,

1

1,
 

.,

1

1

1

1

2

1,
11

H
lk

n

kk

n

ll
TTTT

n

lk
ASSSS

n
l

n
l

n
k

n
k ∑∑∑

−

+′=

−

+′=

αααα
−

=′′








−








−= ′+′′+′  

We now claim that reduces the expression .nR  We have 
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H
lk

n

kk

n

ll
A ,

1

1

1

1
∑∑
−

+′=

−

+′=

 

[ ( ) ( ) ( ) HHH
n

kk

n

ll
H

H
lklklk

n
T 222

1

1

1

1
2

2
122

2
+−+++++−= ∑∑

−

+′=

−

+′=

 

]HHH lklklk 222 112 −−+−++−−  

[ ( ) ( ) ( ) ( ) HHHH
n

ll
H

H
lklnlkln

n
T 2222

1

1
2

2
121

2
++′−++++′+++−= ∑

−

+′=

 

( ) ]HHHH lklnlkln 2222 11 −′+−−−−+′−−+  

[ ( ) ( ) ( ) ( ) HHHH
H

H
knlnlnn

n
T 2222

2

2
1112

2
+′++−′−++′++−=  

( ) ]HHH knlklk 222 12 −′−−′−′−+′+′−  

HHH
HH Tn

knTn
lnTn

lnT
222

212 111
2
12 






 +′++






 −′−+












 +′++−= −  












 ′−′−






 +′++′−






 −′−+

HHH
Tn

lkTn
lkTn

kn 222 111  

,1,1






 +′+′= Tn

lTn
kf H  

where the function Hf  is given by (3.4). Combining the above 
calculations lead to 

.1,1
11

1

0,








−








−






 ++= αααα

−

=
++∑ TTTT

H
n

lk
n

n
l

n
l

n
k

n
k SSSSTn

lTn
kfR  

Denote by ,1, ≥µ jj  the eigenvalues of the operator α
Hf

K  and by 

,1, ≥jg j  the corresponding eigenfunctions. Then, 1, ≥jg j  are 
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orthonormal in SH ,H  and the 1, ≥µ jj  are square-summable, which 

implies that random variables 

( ) ,1,:
0

≥= α∫ jdSsgB sj
T

j  

are independent standard normal random variables, and moreover, we 
can write 

( ) ( ) ( ),,
1

ygxgyxf jjj
j

H µ= ∑
≥

 (3.7) 

for [ ],,0, Tyx ∈  by using the Lemma 3.2. Thus, the sum nR  becomes 









−








−



















 +







 +µ= αααα

≥

−

=
++∑∑ TTTTijj

j

n

lk
n

n
l

n
l

n
k

n
k SSSSTn

lgTn
kgR 11

11

1

1

0,
 

.1
21

01
1 





















−






 +µ= αα

−

=≥
+∑∑ TTj

n

k
j

j n
k

n
k SSTn

kg  

Combining this with 

( ) ,1
0

1

0
1 jsj

T

TTj

n

k
BdSsgSSTn

kg
n
k

n
k ≡→








−






 + ααα

−

=
∫∑ +  

in ( )Ω2L  for all ,1≥j  as n tends to infinity, we get 

( ) ,2

1
jj

j
n BR µ→ ∑

≥

 

in ( ),1 ΩL  as n tends to infinity, which deduces 

( ) 












==

µ−−

∞→

∑ ≥
2

12
2

2
2

lim jjj
t

n
t BR

n
it eEEeeE l  

 ,
1

1 2
1

2
2
2

2
11















µ+
=













= ∏∏

≥

µ−

≥ jj

B

j t
eE jj

t
 

since the eigenvalues are positive. This completes the proof.   
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We can state an alternative result that allows to consider the 

situation, when the parameter of the integrand α  is less than .2
1  

Theorem 3.2. Let ( )1,2
1∈H  and ( ).2

1,0∈α  Then, the 

characteristic function of the random variable l  given by (3.1) is 

,11
2
1

2
1














+= ∏

≥ jj

it

t
Ee

ν
l  (3.8) 

where 1, ≥jjν  are the eigenvalues of the operator H
f

K α  given by (2.6) 

and αf  is defined by (3.5). 

Proof. We follow the lines of this corollary by interchanging the roles 
of X and Y in (3.6). We obtain that 
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and αf  is given by (3.5). The rest of the proof is same as this of Theorem 
3.1.   

4. The Case of Two-parameter 

In this section, we will discuss the case of sub-fractional Brownian 
sheet. A sub-fractional Brownian sheet ( )tsS ,21,αα  with parameters 

( )1,0, 21 ∈αα  is a centered Gaussian process starting from zero with the 
covariance function given by 
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( ) ( )( ) ( ( ) ( ))vuStsSEvutsR ,,,,, 2121
21

,,
,

αααα
αα =  

[( ) ]





 −++−+= αααα 1111 2222

2
1 ususus  

[( ) ] .2
1 2222 2222







 −++−+⋅ αααα vtvtvt  (4.1) 

Denote by ( )tsS ,21,αα  and ( )tsS HH ,21,  two independent sub-fractional 
Brownian sheets. We denote ( ),, 21 ααH  the canonical Hilbert space of 

the Gaussian process ( )tsS ,21,αα  defined by the closure of the linear 
vector space generated by the elementary functions { [ ] [ ],1 ,0,0 st ×  

[ ]}Tts ,0, ∈  with respect to the inner product 

[ ] [ ] [ ] [ ] ( ) ( ) ( )( ).,,,1,1 2121 ,,,0,0,0,0 vutsRvust αααα×× =H  (4.2) 

If one of 1α  and 2α  is greater than ,2
1  then the space ( )21, ααH  may 

contain distributions. In this case, it is more convenient to work with the 
following set of functions ( ),, 21 ααH  which is given as ( ) =αα 21,H  

.
21 αα ⊗ HH  Therefore, Wiener integrals with respect to ( )tsS ,21,αα  

can be naturally defined for integrands in ( )., 21 ααH  The following 
theorem is our main result in this section. 

Theorem 4.1. Let .2
1,,, 2121 >ααHH  Then, the characteristic 

function of the random variable 

( ) ( ),,, 2121 ,,
00

tsdStsSU HHTT αα∫∫=  (4.3) 

is given by 
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eE
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 (4.4) 

where 1,, ≥µ krk  are the eigenvalues of the operators r
rHf

K α  with rHf  

given by (3.4), for .2,1=r  
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Proof. The proof of the theorem is same as that of Theorem 3.1. 
Denote by 
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with Tn
ktk =  for every .1,,1,0 −= nk K  As in the proof of Lemma 

3.1, we can prove that UAn →  as n tends to infinity in ( )Ω2L  for 

,2
1>rH  and .2,1,2

1 =>α rr  Following the same line of reasoning as 

in the proof of Lemma 3.1, we have 
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Let now ,1,, ≥µ kjk  the eigenvalues of the operator ,2,1, =α rK r
rHf

 and 

,2,1,1,, =≥ rkg rk  the corresponding eigenfunctions. Then, 

{ }1,, ≥kg rk  
rα

⊂ H  and the sequence { }1,, ≥µ krk  is square-

summable for ,2,1=r  and moreover, ( ) 1,,, 212,1, ≥αα∈⊗ kjgg kj H  

are orthonormal, which implies that random variables 
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( ) ( ) ( ) ,1,,,: 21,
2,1,

00
, ≥= αα∫∫ kjtsdStgsgB kj

TT
kj  

are independent standard normal random variables. By (1) of Lemma 3.2, 
it follows that 
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On the other hand, it is not difficult to check that 
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in ,1L  for all ,1, ≥kj  as n tends to infinity. It follows that 
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n BB µµ→ ∑
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in ,1L  as n tends to infinity, and the theorem follows.   

Theorem 4.2. Assume that 2
1>rH  and ( ) .2,1,2

1,0 =∈α rr  Then 
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itU
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 (4.6) 

where the random variable U is given by (4.3) and 1,, ≥λ krk  are the 

eigenvalues of the operator r
r

H
f

K α  with rf α  given by (3.5), for .2,1=r  
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