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Abstract

T
In this note, we consider the distribution of the random variable J 0 S;*dsf and

obtain the expression of its characteristic function, where S* and SH are two

independent sub-fractional Brownian motions with indices o e (0,1) and

H e (%, 1), respectively.

1. Introduction

Recently, as a generalization of Brownian motion, Bojdecki et al. [5]

introduced and studied a rather special class of self-similar Gaussian
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processes, which preserve many properties of the fractional Brownian
motion (fBm in short). This process arises from occupation time
fluctuations of branching particle systems with Poisson initial condition,
which is called the sub-fractional Brownian motion. The so-called sub-
fractional Brownian motion (sub-fBm in short) with index H € (0, 1) is a
mean zero Gaussian process S = {StH, t >0} with S({I =0, and the

covariance

Ryt s) = E[sHsH] = 2 20 L o2 oo 2| 1)

1
2
forall s,¢>0. For H =1/2, SH coincides with the standard Brownian

motion B. S is neither a semimartingale nor a Markov process unless

H =1/2, so many of the powerful techniques from stochastic analysis

are not available, when dealing with SH The sub-fBm has properties
analogous to those of fBm (self-similarity, long-range dependence, Holder
paths), and satisfies the following estimates:

[(2-22H 1Al - s < E[(StH -SH )2] <[(2-22H1)vi]( - s,

(1.2)

But, its increments are not stationary, more works for sub-fBm can be
found in Bojdecki et al. [6], Tudor [15, 16, 17, 18, 19], and Yan-Shen [21].
In this note, we consider the law of stochastic integral

T
'[ SedsH, (1.3)
0

where S/ and StH are two independent sub-fBms. Our aim is to obtain

the expression of its characteristic function.

We have known that it is difficult to compute the law of a stochastic
integral with respect to the Wiener process, when the integrand is not
deterministic. The systematic study for this problem was initiated in Lévy

t t
[10]. He showed that the characteristic function of A; = IOX Y — IOYS

dX; is
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1

iuA
B(e™) = cosh(ut)’

t>0,ueR,
where (X, Y,) is an R?-valued Brownian motion with (X, Yy) = (0, 0).
This is called Lévy’s stochastic area formula. Berthuet [3] and Yor [22]

(see also Protter [14]) gave other proof, and considered the law of the

random variables
¢ ¢
xj X,dY, + pj Y,dX,, t=0.
0 0

The two-parameter case was considered in Julia-Nualart [9] and Nualart
[12]. Yan-Chen [20] considered the intersection local time and calculus
for the stochastic area process A;. The stochastic area process A; shares
some properties of Brownian motion. For example, A; satisfies a
reflection principle. If one changes the sign of the increments of A; after
a stopping time, the process obtained thereby has the same distribution
as that of A;. One can use this fact to show, for example, that if S; =

supg<s<; Ag, then S; has the same distribution as |4;|, for ¢ > 0.

As an extension, recently, Bardina-Tudor [2] considered a similar

integral driven by fractional Brownian motions, and they obtained the

_ . . 1
characteristic function of the random variable S = I 0 BgdBSH , where B“

and BH are two independent fractional Brownian motions with Hurst
indexes o € (0,1) and H e (%, 1), respectively. As is well-known, in

recent years, the long-range dependence property has become an
important aspect of stochastic models in various scientific areas including
hydrology, telecommunication, turbulence, image processing, and finance.
The best known and most widely used process that exhibits the long-
range dependence property is fractional Brownian motion. The fBm is a
suitable generalization of the standard Brownian motion, but exhibits
long-range dependence, self-similarity, and stationary increments. It is

impossible to list here all the contributors in previous topics. Some
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surveys and complete literatures could be found in Biagini et al. [4], Hu
[8], Mishura [11], Nualart [13]. However, contrast to the extensive
studies on fBm, there has been little systematic investigation on other
self-similar Gaussian processes. The main reasons are the complexity of
dependence structures and the non-availability of convenient stochastic
integral representations for self-similar Gaussian processes, which do not
have stationary increments. On the other hand, many authors have
proposed to use more general self-similar Gaussian processes and random
fields as stochastic models, and such applications have raised many
interesting theoretical questions about self-similar Gaussian processes
and fields in general. Thus, it seems interesting to study the law of
stochastic integrals driven by more general self-similar Gaussian

processes.

This note is organized as follows. In Section 2, we present some
preliminaries for sub-fBm and the Wiener integral with respect to sub-

fBm. In Section 3, we obtained the characteristic function of stochastic

. T . . . .
integral -[0 Sto‘dStH . The case of two-parameter is considered in Section 4.

2. Preliminaries on Sub-FBM

Let {SH,¢ < [0, T]} be a sub-fBm with % < H <1, defined on the

complete probability space (Q, F, P). It is possible to construct a
stochastic calculus of variations with respect to the Gaussian process
SH , which will be related to the Malliavin calculus. Some surveys and

complete literatures could be found in Alos et al. [1], Nualart [13], and
Tudor [18]. We recall here the basic definitions and results of this

calculus. The crucial ingredient is the canonical Hilbert space Hpy (is
also said to be reproducing kernel Hilbert space) associated to the sub-
fBm ST , which 1s defined as the closure of the linear space & generated

by the indicator functions {1[0,t]» t € [0, T]} with respect to the scalar

product
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t s
<1[0,t]7 1[O,S]>HH = J.O-[O (I)H(u’ U)dLLdU = RH(t’ 3)7

where ¢g(s, t) = H2H —1)[|s - 15|2H_2 —(s+¢?72]. As usual, we can

define the linear application

®: &> L2Q, F, P),

T
1o, = @(1[0,]) = _[0 10, q(s)dSE = S/ (2.1)

The application can be extended to a linear isometry between Hpy and

the Gaussian space associated with SH . We will denote the isometry by

¢ - ST (¢), and
(0 )y = EIS" @S0 = [ [ ole00m (s, s,

T
for any ¢, ¥ € Hy. We call ST (o) = Io ¢(s)dS!, the Wiener integral of

¢ with respect to SH  Sometimes working with the space Hy is not

convenient; once, because this space may contain also distributions (see,
for example, Tudor [16, 19] for more details) and twice, because the norm

in this space is not always tractable. We will use the subspace |H H| of
Hpr, which is defined as the set of measurable functions ¢ : [0, T'] = R
on [0, T'] such that

T T
[, [, o@loies s, tudo < o
It has been proved in Tudor [19] that |H|, is a strict subspace of Hp.

For % < H <1, we denote by S the set of smooth functionals of the

form
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where f e Cj(R") and ¢; € Hy. The Malliavin derivative of a

functional F defined as above is given by
n of
Hp _ H H .
DHF = Zaxi (87 (91), -, 8" (90 )9
1=

The derivative operator D is then a closable operator from L2 (Q) into

I[*(Q, Hy ). We denote by Db? the closure of S with respect to the

norm

2 2
|F], 5 = EFP® + EIDFIE,.

The divergence integral 8 is the adjoint operator of D, That is, we

say that a random variable u in LQ(Q, Hp ) belongs to the domain of the

divergence operator 57, denoted by Dom(ESH ), if
H
E(D™F, u)y, | < | Fl 120

for every F e S. In this case, 6 (u) is defined by the duality

relationship

E[Fst (u)] = E(DYF, Wy (2.2)

for any u e D2, and we have the following integration by parts formula:

Fsf (u) = 8" (Fu)+ (DY F, Wy (2.3)
for any u e Dom(SH), F e DY2 such that Fu e LQ(Q, Hy ). It follows
that

Eo | = Bl + B (D7u) )y, 0,
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where (DHu)" is the adjoint of D¥u in the Hilbert space Hy ® Hy,

and
9 T,T
||u||HH = -[o J.O usu, g (s, r)dsdr, (2.4)
and for ¢ : [0, T> > R, we have

ol ri = () gys 00 0 0t )0, o)dedsa'ds.

[0, T

We also will use the notation
T
8 () = I udSH
0

to express the Skorohod integral of a process u. It is also possible to
introduce multiple integrals I,(f,), f, € HY" with respect to S. For

the divergence integral, we have the following convergence: if {u,} is a
sequence of elements in Dom(57 ) such that u, — u in L*(Q, Hy),
and 8%(u,) > G in I?(Q), then we have u e Dom(s”) and
() = G.

Clearly, for any f € Hp, the Wiener integral with respect to S H can
be defined as (see Tudor [19])

Sj_]_

jon(s)dsf - r}ggogf(sj)(sg _sH ) 2.5)

where {0 = sy, sy, -, s, =T} is a partition of [0, T] such that

max;{|s;;; — s;|} > 0, as n tends to infinity. Moreover, if stochastic
.. . T
process u is independent of S, then the Skorohod integral I 0 u(s) deI

can be defined as (2.5), since the Malliavin derivative of u is zero.
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Finally, we will denote by |H|nH g the set of symmetric functions in
M3, For fe|HF g» we recall the Hilbert-Schmidt operator (see

Caithamer [7]) K,{{ : |H|%I - |H|§I given by
H T T ’ ’ ’
(KF0)0) = [ [ Fe 30 om (x, ) dd. 26)
0J0

One can easily check that, if f is positive and H e (%, 1), then the

eigenvalues of operator K }{{ are positive. In fact, we can write
H T
(KF0)0) = [ AW, y)w()ds.

T
where A(x', y) = Io f(x, )0 (x, x')dx is positive, then the operator

K /{{ 1s a positive operator. It is noteworthiness that the operator K ,{1

will be changed as

KH " d

Foy)= . f(x, y)o(x)dx,
. 1

provided H = 3

3. The Characteristic Function of the Integral (1.3)

Throughout this section, SH and S* will denote two independent
sub-fractional Brownian motions with parameters H and a, respectively.

We compute the characteristic function of the random variable
T
‘= I SedsH. 3.1)
0

The method used here is essentially due to Bardina-Tudor [2]. Note that,

when H e (%, 1), the random variable /¢ defined in (3.1) is well-defined,



THE LAW OF A STOCHASTIC INTEGRAL ... 121

since obviously S belongs to L?(Q) x |H|; for any o. The main object of

this section is to explain and prove the following theorem.

Theorem 3.1. Let o € (%, 1), H € (%, 1). If the random variable ¢

is given by (3.1), then we have
1
jt0 1|7
il
Eett = H 1+_t2 - (3.2)
Jj>1 M
where p;, j 21 are the eigenvalues of the operator K;‘H given by (2.6)
and fH is defined by (3.4).
In order to prove the theorem, we need some lemmas.

Lemma 3.1. Assume H < (%, 1) and o € (0, 1). Denote by

n-1
=Sl - st) o
k=0

where A, ={0=1ty <t; <ty <--<t, =T} denotes a partition of
[0, T], such that |A|, = max,s|t, —t, 1| tends to zero as n tends to

infinity. We then have

b, =>4,
in L*(Q) as n tends to .

Proof. By the independence of S H and S ¢ we can write

th+1
olgH  qH)|_ o H
S (stk+1 s} |- j . Sadst

Now, it suffices to prove

n-1

> S 10010 > 8%,
k=0
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in I2(Q) x |H|;; as n tends to infinity. Actually, in general, to prove the

convergence of a sequence of stochastic integrals of divergence type, one
needs the convergence of the Malliavin derivatives, but in our case, it is

unnecessary due to the independence of the two sub-fBms. Noting that

S* = Y18y, 1,,)0) forall n > 1, by (1.2), we have

2
E

n—1
Z(Sttz = S My, 4,11
k=0 ‘H‘H

) th+l £ lj+1
Z J‘ J‘ j E(St‘;‘2 - SS)(S;‘ - S,?‘)d)H(u, v)dudv
k=0 tp tj J

IA

nol et
[(2-2% 1 )v1] Y L o L’”pk —ul®lt; — v (, v)dudy
k,j=0" "k J

= [(2-2%t)vi](2 - 22Hr2H a2 o o,
as n tends to infinity. O

Lemma 3.2. (1) Let o € (%, 1). Consider the function
£ (e, ) = 22T AT+ 0P (= ) (1 g
(0 =P =+ P e =P}, x ye0, 7] 3.9
with % < H < 1. Then, we have f1 < |H|c21,S'

(2) Let H e (%, 1). Consider the function
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fx, v) = x2% 4 520 —%[(x + y)‘%L +]o — y|2a], x,yel0,T], (3.5)

with 0 < o < 1. Then, we have f* € |H|§{’S.

Proof. Let us prove the point (1) and the point (2) is similar. We have
to show that

L= [ ™G 307 (e 32001, 2200001, 30 )i dnadysdys < o
Noting that
(i i) = E(S -8 (87 - s71)
< (m(s# - st )Zﬁ(E(Sﬁ -s7 )QT%
< (T —x)(T - )",
by (1.2), we see that the integral I is bounded by

2
I< _[[0 - H[(T = 2T = 3T 100 (21, %2) 00 (31, 39 )doydxodyrdys,
)

where

200—-2 200—2
0a (21, 3) = 20— 1)y — 29 P42 — (11 + 20 242

< af2a - |z, — x9]*72,

for all xq, x9 > 0. It follows that

I<(ea-Pf (T -m 0= ) (- 0)
Jey = g 7%y = o [P dxy dgdyrdy,

2
- {a(za -1 o2 8 =2 - |2a_2dx1dx2} _
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Make substitution z = ~—2.
T-y

. Then, we have

| o gy T =T = e = o
T ox
=2 -[0 (T - x)9(T - y)H|x - y|2“_2dxdy

T e X
-9 J. T (T _ x)2H+20.71(1 _ Z)7H72az2(x—2dzdx
0

el

Il
[\]

T
(1 _ Z)—H—2a22a—2( (T _ x)2H+2a—1 dx}dz
JO Tz

2H +2a
TH+ J‘ (1- H22a72d2
o

T2H+20L

ZTB(2G 1H+1)<OO

because of o e (%, 1), where B is the Beta function. This completes the
proof. O
Finally, we recall the following fact.
Lemma 3.3. If X, Y are two independent random vectors, then
E[¥(X, Y)X] = p(X),
where p(x) = E[¥(x, Y)] and ¥ is a measurable function.
Now, we can prove our main result.

Proof of Theorem 3.1. By Lemma 3.1, we have

where /¢, is given by (3.3) with ¢, = %T, for every £k =0,1, -, n—1.

Let us compute the characteristic function of the random variable ¢,,.

Define X = (Xy, Xy, ..., X,,1) and Y = (Y, Y3, ..., Y,,_; ) by
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X, =8, and Y, =Sg, -SP. k=012..,n-1 (36

Thanks to Lemma 3.3 with y(x, y) = exp{itZ?=1 X;yj}, we obtain

. xn-1 1,2.T1H
px) = E[enzkoxkyk] _e A g

and

; ~L2xTplx
Ele'n ) = Ep(X) = E(e 2! ]

Il
TN
® |
o=
Y
’:‘JM
S
N

where R, = XT A" X, and the matrix AH = (A;gl Ve 1=0.1. ... n_1 1s given

by

H H H H H
Al - E[SﬂT - SETJ (SH_lT - SLT]

TZH

= [k 1+ 2P 2k - 1P w2k 4 11
2n

R+ P k1 - -1 -1,

A straightforward calculation shows that

n-1
H qo o
R, = A ST S
n k,l Ep®Lp
k,1=0 n

I
i
AN =
S
=
/_N_\\
gl
AR
VR
05)
= Q
-
A
S
05)
s|=e
~
N—
N—e
7\
g
VR
K2
=e
A
S
105}
~Q
~
N——
N—

|
5
[\]
L
VR
nn
=R
A
~
|
nn
=~ R
ﬂ
Ne—
7~ N\
NC/)
=<
+
~
nn
~Q
!
>
S
L
S
L
o
=

We now claim that reduces the expression R,,. We have
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S
-
&
iR

(k+l+2)2H+2(k+l+1)2H—(k+l)2H

2= PP e 1= P -1 - 1P
i S 2H 2H 2H 2H
2HZ[—(n+l+1) +(B+1+2* +(n+ D)7 - (R +1+1)
20" 1T

+ (=02 1P — -1 1PE - P
T* 2H 2H 2H
=— +(n+l'+1D)" +(n=-0'-1"" +(n+k +1)
2n

_(kr+ l!+ 2)2H _|k! _lr|2H _|n_k1_1|2H]

' 2H ' 2H ' 2H
_22H_1T2H+l{(n+l+1T) +[n—l—1Tj +(n+k +1Tj
2 n n n

n n

' 2H ’ ’ 2H ’ ' 2H
+(n—k—1T) _(k+1+l+1T) _(k—sz }

:fH(k +1T, l +1Tj’
n n

where the function fH is given by (3.4). Combining the above

calculations lead to

n-1

H(k+1 l+1
W ( tlp Lt Tj [sg+1T ng] [Sg*—lT_SZTJ'
k,1=0 n n n

Denote by p;, j 21, the eigenvalues of the operator K?H and by

gj,J 21, the corresponding eigenfunctions. Then, g;, j>1 are
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orthonormal in |H| g g and the p;, j =1 are square-summable, which

implies that random variables
T . .
Bj = J.o gj(s)dSy, j =1,

are independent standard normal random variables, and moreover, we
can write

A (x, y) = Zujgj(x)gj(y), (3.7)

=
for x, y € [0, T'], by using the Lemma 3.2. Thus, the sum R,, becomes

n-1
k+1 [+1
Ry = Z[Z“jgj( n Tjgi( n )] (Sg”T SZTJ (S?”T SZTJ

k,1=0\ j=1

Bof o) )

Jjz1

Combining this with

n-1

k+1 T
NCTH [CRAN

k=0

in IL2(Q) for all j > 1, as n tends to infinity, we get

R, — ZH]‘(B]’)Q

=1

in I}(Q), as n tends to infinity, which deduces

n—w

2 2
. -LR £y 4.B2
E(e™)= lim Ee 2 " = E[e 7 22 ]J

Do |

) ]

since the eigenvalues are positive. This completes the proof. O
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We can state an alternative result that allows to consider the

situation, when the parameter of the integrand o is less than % .

Theorem 3.2. Let He(%,l) and (xe(O,%). Then, the

characteristic function of the random variable ( given by (3.1) is

1
) 2
Ee't! =H(1+ 21 j : (3.8)
j

]Zl t7v

where vj, j 21 are the eigenvalues of the operator K}{i given by (2.6)

and f* is defined by (3.5).

Proof. We follow the lines of this corollary by interchanging the roles
of X and Yin (3.6). We obtain that

n—o

. 2p
E(e™)= lim E|e 2 " |,
where

n-1

. H H H H

R, = E(SZTSZTJ (SﬂT - SETJ (SfiT - SLT]

k,l=0 n n n n n n
e

1
_ af B [ H H H H
-3 (;T, ;T) [S,MT —SﬁTJ (SMT - SLT],
’=0 n n n n

and % is given by (3.5). The rest of the proof is same as this of Theorem
3.1. O

4. The Case of Two-parameter

In this section, we will discuss the case of sub-fractional Brownian
sheet. A sub-fractional Brownian sheet S%'%2(s, t) with parameters
a, ay € (0, 1) is a centered Gaussian process starting from zero with the

covariance function given by
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Ral,(xz ((S’ t)7 (u7 U)) = E(S(XLOLZ (37 t)SOLl’OL2 (u” U))

= (32"‘1 +u?™ - % [(s + w)** +]s — u*™ ])
R R 1 (R RE R S| NOBY

Denote by S*%2(s, ¢t) and S H2(s, {) two independent sub-fractional

Brownian sheets. We denote H(ay, ay), the canonical Hilbert space of

the Gaussian process S%1'%2(s, t) defined by the closure of the linear

vector space generated by the elementary functions {l[O,t]x[O, s]>

s, t € [0, T']} with respect to the inner product
<1[0,t]><[0,s], 1[O,u]x[0,v] >H((X1,OL2) = R(ll,U-Q ((S, t)’ (LL, U)) (42)

If one of a; and agy is greater than %, then the space H(o;, o) may

contain distributions. In this case, it is more convenient to work with the
following set of functions |H|(ay, ag), which is given as |H|(oy, ag) =

|H|a1® |H|a2. Therefore, Wiener integrals with respect to S%°*2(s, t)

can be naturally defined for integrands in |H|(a;, ay). The following

theorem 1is our main result in this section.

Theorem 4.1. Let H,, Hy, oy, ag > % Then, the characteristic

function of the random variable

T T
U =J j' S92 (5, ¢)asHHa (s 4), (4.3)
04JO

PRI —— »
f5SE RREA R TT)

where py, ., k > 1 are the eigenvalues of the operators K;‘ﬁr with fH’

is given by

given by (3.4), for r =1, 2.
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Proof. The proof of the theorem is same as that of Theorem 3.1.

Denote by
n-1
A, = Z S %2 (tk, tl)SHl’HZ(Ak,l), (4.5)
k,1=0
where

Hy, H Hy, H Hy, H
STVT2(Ag 1) = STV T2 (tggqs t1eg) = STV 2 (8, t4)
~ stz o) STV (g 1),

with ¢, = %T for every R =0,1,..., n—1. As in the proof of Lemma
3.1, we can prove that A, — U as n tends to infinity in L*(Q) for
H, > %, and o, > %, r =1, 2. Following the same line of reasoning as

in the proof of Lemma 3.1, we have

E(eitA") = E[e_%tZB"J and E(eitU) = lim E[e_%tan J,

n—w

where B,, is given by

n-1 n-1
_ H(k+1 B +1\ Hy(l+1,, I'+1

x SU U2 (A 1)SU N2 (Ap ).

Let now Mk, js k > 1, the eigenvalues of the operator K?;}r, r=1,2, and
8k k21Lr=12, the corresponding eigenfunctions. Then,
&r, k21} < |H|ar and the sequence {pj,, k>1} is square-
summable for r=1,2, and moreover, g;1 ® g o € [H|(ay, 0g), j, k21

are orthonormal, which implies that random variables
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TeT o ‘
Bj = Io IO g1(s)gr 2 (t)dS 1 *2(s, 1), j, k=1,

are independent standard normal random variables. By (1) of Lemma 3.2,
it follows that

i, y) = Zuk,jgk,j(x)gk,j(y),

k21

for j =1, 2, and

2
[+1 I'+1
Z Hj 1l 2{ Z gj, 1( ) Sk, 2( ” T)S“l’“2(Al,l')J .

Jj, k=1

On the other hand, it is not difficult to check that

- I+1 I'+1
Zgj,l(TT)gk,z( P, TjSal’a2(Al,Z')—>

T T
[ ] #iaen0ds™ 2. 0)
in Ll, for all j, k > 1, as n tends to infinity. It follows that

2
B, - Z wikg 2(Bj ),

j k=1

in L', as n tends to infinity, and the theorem follows. O

Theorem 4.2. Assume that H, > % and a, < (0, % ), r =1, 2. Then

i k=1 1+1¢ }\.]17\.}32

where the random variable U is given by (4.3) and Ap ., k21 are the

eigenvalues of the operator KIZ: with f%r given by (3.5), for r = 1, 2.
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